Содержание лейкоцитов в крови

Классификация лейкоцитов. Лейкоцитарная формула: определение, значение для клиники. Гранулоциты: строение, функции, длительность жизни.

Лейкоциты, или белые кровяные тельца, представляют собой бесцветные клетки, содержащие ядро и протоплазму, размером от 8 до 20 мкм. Увеличение количества лейкоцитов в крови называется лейкоцитозом, уменьшение – лейкопенией.

Лейкоциты в зависимости от того, однородна ли их протоплазма или содержит зернистость, делят на 2 группы: зернистые, или гранулоциты, и незернистые, или агранулоциты.

Гранулоциты в зависимости от гистологических красок, какими они окрашиваются, бывают трех видов: базофилы (окрашиваются основными красками), эозинофилы (кислыми красками) и нейтрофилы (и основными, и кислыми красками). Нейтрофилы по степени зрелости делятся на метамиелоциты (юные), палочкоядерные и сегментоядерные.

Агранулоциты бывают двух видов: лимфоциты и моноциты.

Все виды лейкоцитов выполняют в организме защитную функцию. Однако осуществление ее различными видами лейкоцитов происходит по-разному.

Нейтрофилы являются самой многочисленной группой. Основная их функция – фагоцитоз бактерий и продуктов распада тканей с последующим перевариванием их при помощи лизосомных ферментов (протеазы, пептидазы, оксидазы, дезоксирибонуклеазы). Нейтрофилы первыми приходят в очаг повреждения. Нейтрофилы оказывают цитотоксическое действие, а также продуцируют интерферон, обладающий противовирусным действием.

Эозинофилы также обладают способностью к фагоцитозу, но это не имеет серьезного значения из-за их небольшого количества в крови. Основной функцией эозинофилов является обезвреживание и разрушение токсинов белкового происхождения, чужеродных белков, а также комплекса антиген-антитело. Эозинофилы продуцируют плазминоген, который является предшественником плазмина – главного фактора фибринолитической системы крови.

Базофилы продуцируют и содержат биологически активные вещества (гепарин, гистамин и др.), чем и обусловлена их функция в организме. Гепарин препятствует свертыванию крови в очаге воспаления. Гистамин расширяет капилляры, что способствует рассасыванию и заживлению. В базофилах содержатся также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки; фактор активации тромбоцитов (ФАТ); тромбоксаны, способствующие агрегации тромбоцитов; лейкотриены и простагландины.

Лимфоциты— главные клетки иммунной системы, обеспечивают гуморальный иммунитет (выработка антител), клеточный иммунитет (контактное взаимодействие с клетками-жертвами), а также регулируют деятельность клеток других типов. Большинство лимфоцитов относятся к долгоживущим (живут 20 и более лет), но есть короткоживущие (до 3 дней).

Моноциты обладают выраженной фагоцитарной функцией. Это самые крупные клетки периферической крови и их называют макрофагами. Моноциты находятся в крови 2-3 дня, затем они выходят в окружающие ткани, где, достигнув зрелости, превращаются в тканевые макрофаги (гистиоциты).

Процентное содержание различных форм лейкоцитов называется лейкоцитарной формулой. В норме их соотношение постоянно изменяется при заболеваниях. Поэтому исследование лейкоцитарной формулы необходимо для диагностики.

Нормальная лейкоцитарная формула.

Гранулоциты: Базофилы 0-1%.

Нейтрофилы. Юные 0.

Агранулоциты. Моноциты 2-10%.

При различных патологических состояниях лейкоцитарная формула может претерпевать значительные изменения: увеличение или уменьшение содержания какого-либо вида лейкоцитов или появлении клеточных форм, в норме в периферической крови не встречающихся.

Агранулоциты: строение, функции, длительность жизни.

Агранулоциты не содержат гранул в цитоплазме и подразделяются на две совершенно различные клеточные популяции —лимфоциты и моноциты.

Лимфоциты являются клетками иммунной системы. Лимфоциты при участии вспомогательных клеток (макрофагов) обеспечивают иммунитет, т. е. защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делиться. Все остальные лейкоциты являются конечными дифференцированными клетками.

По размерам лимфоциты подразделяются на:

1) малые (4,5—6 мкм);

2) средние (7—10 мкм);

3) большие (больше 10 мкм).

В периферической крови до 90% составляют малые лимфоциты и 10—12% — средние. Большие лимфоциты в периферической крови в норме не встречаются. При электронномикроскопическом исследовании малые лимфоциты можно подразделить на светлые и темные.

Малые лимфоциты характеризуются:

1) наличием крупного круглого ядра, состоящего в основном из гетерохроматина, особенно в мелких темных лимфоцитах;

2) узким ободком базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы — эндоплазматическая сеть, единичные митохондрии и лизосомы.

По источникам развития лимфоциты подразделяются на:

1) Т-лимфоциты. Их образование и дальнейшее развитие связано с тимусом (вилочковой железой);

2) В-лимфоциты. Их развитие у птиц связано с особым органом (фабрициевой сумкой), а у млекопитающих и человека —с пока точно не установленным ее аналогом.

Кроме источников развития, Т и В лимфоциты различаются между собой и по выполняемым функции.

По функции:

1) В-лимфоциты и образующиеся из них плазмоциты обеспечивают гуморальный иммунитет, т. е. защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов,

белков и др.), содержащихся в крови, лимфотканевой жидкости;

2) Т-лимфоциты, которые по выполняемым функциям подразделяются на следующие субпопуляции: киллеры, хелперы, супрессоры.

По продолжительности жизни лимфоциты подразделяются на:

1) короткоживущие (недели, месяцы) — преимущественно Влимфоциты;

2) долгоживущие (месяцы, годы) — преимущественно Тлимфоциты.

Моноциты— наиболее крупные клетки крови (18—20 мкм), имеющие крупное бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы.

По своей функции — фагоциты. Моноциты являются не вполне зрелыми клетками. Циркулируют в крови 2—3 суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов.Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему.

Соединительные ткани. Общая характеристика, классификация. Клеточные элементы рыхлой волокнистой соединительной ткани: разновидности, происхождение, строение, значение, регенерация.

Соединительные ткани — это комплекс мезенхимных производных, состоящий из клеточных дифферонов и большого количества межклеточного вещества (волокнистых структур и аморфного вещества), участвующих в поддержании гомеостаза внутренней среды.

Структурнофункциональные особенности соединительных тканей: 1) внутреннее расположение в организме; 2) преобладание межклеточного вещества над клетками; 3) многообразие клеточных форм; 4) общий источник происхождения — мезенхима. Функции соединительных тканей: 1) трофическая (метаболическая); 2) опорная;

Читайте также:  Боль в шейном отделе позвоночника причины, лечение

Соединительная ткань участвует в формировании стромы органов, прослоек между другими тканями, дермы кожи, скелета.

Классификация соединительных тканей.

Разновидности соединительной ткани различаются между собой составом и соотношением клеток, волокон, а

также физико-химическими свойствами аморфного межклеточного вещества.

Соединительные ткани подразделяются на собственносоединительную ткань (волокнистые соединительные ткани и соединительные ткани со специальными свойствами) и скелетные ткани. Последние в свою очередь подразделяются на три разновидности хрящевой ткани (гиалиновая, эластическая, волокнистая), две разновидности костной ткани (грубоволокнистая и пластинчатая), а также цемент и дентин зуба.

Рыхлая волокнистая соединительная ткань обнаруживается во всех органах, так как она сопровождает кровеносные и лимфатические сосуды и образует строму многих органов. Не смотря на наличие органных особенностей, строение рыхлой волокнистой соединительной ткани в различных органах имеет сходство. Она состоит из клеток и межклеточного вещества.

Основными клетками соединительной ткани являются фибробласты, макрофаги, тучные клетки, адвентициальные клетки, плазматические клетки, перициты, жировые клетки, а также лейкоциты, мигрирующие из крови; иногда пигментные клетки.

Межклеточное вещество соединительной ткани состоит из коллагеновых и эластических волокон, а также из основного (аморфного) вещества. Межклеточное веществообразуется, с одной стороны, путем секреции, осуществляемой соединительнотканными клетками, а с другой — из плазмы крови, поступающей в межклеточные пространства.

Дата добавления: 2018-06-01 ; просмотров: 893 ;

Классификация лейкоцитов таблица

Лейкоциты крупнее эритроцитов и содержатся в крови в гораздо меньшем количестве (примерно 7000 в 1 мм3 крови). Они играют важную роль в защите организма от болезней. Каждый лейкоцит имеет ядро. Несмотря на наличие ядра, продолжительность их жизни в кровотоке обычно не превышает нескольких дней. Все они способны к амебоидному движению. Это позволяет им протискиваться через стенки капилляров в области контакта клеток эндотелия и направляться к инфицированным тканям.

Лейкоциты можно видеть с помощью светового микроскопа только в том случае, если они окрашены. На окрашенных препаратах отчетливо выявляются две основные группы лейкоцитов — гранулоциты, или зернистые лейкоциты, содержащие в цитоплазме гранулы, и агрануло-циты, или незернистые лейкоциты, не имеющие таких гранул.

ГРАНУЛОЦИТЫ (72%). Эти клетки как и эритроциты образуются в костном мозге, но из других предшественников. Они характеризуются сегментированными ядрами довольно причудливой формы, поэтому называются также поли-морфноядерными (от греч. poly — много и morpha — форма) лейкоцитами. Среди них различают нейтрофилы, эозинофилы и базо-филы.

1. Нейтрофилы (фагоциты) составляют примерно 70% от общего числа лейкоцитов. Они способны протискиваться между клетками, образующими стенки капилляров и мигрировать по межклеточным пространствам различных тканей, направляясь к инфицированным участкам тела. Нейтрофилы активно фагоцитируют, т. е. поглощают и переваривают, болезнетворные бактерии (разд. 14.8.5).

2. Эозинофилы отличаются присутствием в цитоплазме гранул, окрашивающихся эозином в красный цвет. Обычно на их долю приходится всего 1,5% от общего числа лейкоцитов, но при аллергических состояниях (например при астме или сенной лихорадке) их количество возрастает. Эозинофилы обладают антигистаминны-ми свойствами. Содержание эозинофилов в крови регулируется гормонами, секре-тируемыми корой надпочечников в ответ на самые разнообразные стрессовые воздействия.

3. Базофилы составляют 0,5% обшей популяции лейкоцитов. При окрашивании этих клеток основными красителями, такими, например, как метиленовый синий, в них становятся заметными синие гранулы. Базофилы синтезируют гепарин, белок, препятствующий свертыванию крови, и гистамин, инициирующий в частности воспалительную реакцию в поврежденных тканях, которая способствует их скорейшему заживлению. При некоторых аллергических состояниях, например при сенной лихорадке, наблюдается чрезвычайно высокая секреция гистамина.

АГРАНУЛОЦИТЫ (28%). Эти клетки не содержат гранул в цитоплазме. Если у гранулоцитов ядро как бы состоит из нескольких частей, то здесь оно явно одно, овальное или бобовидное, в связи с чем эти лейкоциты называют мононуклеарными или одноядерными. Выделяют два основных типа незернистых лейкоцитов.

1. Моноциты (4%) образуются в костном мозге и содержат ядро бобовидной формы. В кровотоке они проводят всего 30-40 ч, а затем выходят в окружающие ткани, становясь макрофагами.

2. Макрофаги фагоцитируют бактерии и другие относительно крупные частицы. Как будет пояснено в нашей статье, они способствуют развитию иммунного ответа, связывая и преобразуя некоторые антигены. Вместе с нейтрофилами они образуют действующую по всему организму фагоцитарную систему, являющуюся первой линией обороны против инфекции.

3. Лимфоциты (24%) образуются в тимусе (вилочковой железе) и лимфоидной ткани из клеток костномозгового происхождения. Это сферические клетки с небольшим количеством цитоплазмы. Способность к амебоидному движению у них ограничена. Лимфоциты содержатся также в лимфе и других тканях тела. Различают два их основных типа — Т- и В-лимфоци-ты (разд. 14.9). Они индуцируют иммунные реакции или участвуют в них (способствуют образованию антител, отторжению трансплантатов и уничтожению опухолевых клеток). Продолжительность жизни отдельного лимфоцита широко варьирует — от считанных дней до десяти с лишним лет.

Гистология человека: конспект лекций для вузов
Александр Седов

Настоящим изданием продолжается серия «Конспект лекций. В помощь студенту», в которую входят лучшие конспекты лекций по дисциплинам, изучаемым в вузах. Материал приведен в соответствие с учебной программой курса «Гистология человека». Используя данную книгу при подготовке к сдаче экзамена, студенты смогут в предельно сжатые сроки систематизировать и конкретизировать знания, приобретенные в процессе изучения этой дисциплины; сосредоточить свое внимание на основных понятиях, их признаках и особенностях; сформулировать примерную структуру (план) ответов на возможные экзаменационные вопросы. Данная книга служит пособием для успешной сдачи экзаменов.

Оглавление

  • ЛЕКЦИЯ 1. Введение в курс гистологии
  • ЛЕКЦИЯ 2. Цитология. Цитоплазма
  • ЛЕКЦИЯ 3. Цитология. Ядро. Репродукция клеток

Приведённый ознакомительный фрагмент книги Гистология человека: конспект лекций для вузов предоставлен нашим книжным партнёром — компанией ЛитРес.

Читайте также:  Аргановое масло - полезные и опасные свойства

ЛЕКЦИЯ 1. Введение в курс гистологии

1. Определение гистологии как науки

2. Объекты исследования гистологии

3. Приготовление гистологических препаратов

4. Методы исследования

5. Исторические этапы развития гистологии

1. Гистология наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Следовательно, гистология изучает один из уровней организации живой материи тканевой. Различают следующие иерархические уровни организации живой материи:

· структурно-функциональные единицы органов;

Гистология, как учебная дисциплина, включает в себя следующие разделы: цитологию, эмбриологию, общую гистологию (изучает строение и функции тканей), частную гистологию (изучает микроскопическое строение органов).

Основным объектом изучения гистологии является организм здорового человека и потому данная учебная дисциплина именуется как гистология человека.

Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей.

Гистология, как и анатомия, относится к морфологическим наукам, главной задачей которых является изучение структур живых систем. В отличие от анатомии, гистология изучает строение живой материи на микроскопическом и электронно-микроскопическом уровне. При этом, изучение строения различных структурных элементов проводится в настоящее время с учетом выполняемых ими функций. Такой подход к изучению структур живой материи называется гистофизиологическим, а гистология нередко именуется как гистофизиология. Кроме того, при изучении живой материи на клеточном, тканевом и органном уровнях рассматривается не только форма, размеры и расположение интересующих структур, но методом цито — и гистохимии нередко определяется и состав веществ, образующих эти структуры. Наконец, изучаемые структуры обычно рассматриваются с учетом их развития, как во внутриутробном (эмбриональном) периоде, так и на протяжении постэмбрионального онтогенеза. Именно с этим связана необходимость включения эмбриологии в курс гистологии.

Гистология, как любая наука, имеет свои объекты и методы их изучения. Непосредственными объектами изучения являются клетки, фрагменты тканей и органов, особым способом приготовленные для изучения их под микроскопом.

2. Объекты исследования подразделяются на:

· живые (клетки в капле крови, клетки в культуре и другие);

· мертвые или фиксированные, которые могут быть взяты как от живого организма (биопсия), так и от трупов.

В любом случае после взятия кусочков они подвергаются действию фиксирующих растворов или замораживанию. И в научных, и в учебных целях используются фиксированные объекты. Приготовленные определенным способом препараты, используемые для изучения под микроскопом, называются гистологическими препаратами.

Гистологический препарат может быть в виде:

· тонкого окрашенного среза органа или ткани;

· мазка на стекле;

· отпечатка на стекле с разлома органа;

· тонкого пленочного препарата.

Гистологический препарат любой формы должен отвечать следующим требованиям:

· сохранять прижизненное состояние структур;

· быть достаточно тонким и прозрачным для изучения его под микроскопом в проходящем свете;

· быть контрастным, то есть изучаемые структуры должны под микроскопом четко определяться;

· препараты для световой микроскопии должны долго сохраняться и использоваться для повторного изучения.

Эти требования достигаются при приготовлении препарата.

3. Выделяют следующие этапы приготовления гистологического препарата

Взятие материала (кусочка ткани или органа) для приготовления препарата. При этом учитываются следующие моменты: забор материала должен проводиться как можно раньше после смерти или забоя животного, а при возможности от живого объекта (биопсия), чтобы лучше сохранились структуры клетки, ткани или органа; забор кусочков должен производиться острым инструментом, чтобы не травмировать ткани; толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор мог проникнуть в толщу кусочка; обязательно производится маркировка кусочка (указывается наименование органа, номер животного или фамилия человека, дата забора и так далее).

Фиксация материала необходима для остановки обменных процессов и сохранения структур от распада. Фиксация достигается чаще всего погружением кусочка в фиксирующие жидкости, которые могут быть простыми спирты и формалин и сложными раствор Карнуа, фиксатор Цинкера и другие. Фиксатор вызывает денатурацию белка и тем самым приостанавливает обменные процессы и сохраняет структуры в их прижизненном состоянии. Фиксация может достигаться также замораживанием (охлаждением в струе СО2, жидким азотом и другие). Продолжительность фиксации подбирается опытным путем для каждой ткани или органа.

Заливка кусочков в уплотняющие среды (парафин, целлоидин, смолы) или замораживание для последующего изготовления тонких срезов.

Приготовление срезов на специальных приборах (микротоме или ультрамикротоме) с помощью специальных ножей. Срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной микроскопии — монтируются на специальные сеточки.

Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов удаляется уплотняющая среда (депарафинизация). Окраской достигается контрастность изучаемых структур. Красители подразделяются на основные, кислые и нейтральные. Наиболее широко используются основные красители (обычно гематоксилин) и кислые (эозин). Нередко используют сложные красители.

Просветление срезов (в ксилоле, толуоле), заключение в смолы (бальзам, полистерол), закрытие покровным стеклом.

После этих последовательно проведенных процедур препарат может изучаться под световым микроскопом.

Для целей электронной микроскопии в этапах приготовления препаратов имеются некоторые особенности, но общие принципы те же. Главное отличие заключается в том, что гистологический препарат для световой микроскопии может длительно храниться и многократно использоваться. Срезы для электронной микроскопии используются однократно. При этом вначале интересующие объекты препарата фотографируются, а изучение структур производится уже на электронограммах.

Из тканей жидкой консистенции (кровь, костный мозг и другие) изготавливаются препараты в виде мазка на предметном стекле, которые также фиксируются, окрашиваются, а затем изучаются.

Из ломких паренхиматозных органов (печень, почка и другие) изготавливаются препараты в виде отпечатка органа: после разлома или разрыва органа, к месту разлома органа прикладывается предметное стекло, на которое приклеиваются некоторые свободные клетки. Затем препарат фиксируется, окрашивается и изучается.

Читайте также:  Третья глава книги «Сохрани свою будущую жизнь»

Наконец, из некоторых органов (брыжейка, мягкая мозговая оболочка) или из рыхлой волокнистой соединительной ткани изготавливаются пленочные препараты путем растягивания или раздавливания между двумя стеклами, также с последующей фиксацией, окраской и заливкой в смолы.

4. Основным методом исследования биологических объектов, используемым в гистологии является микроскопирование, т. е. изучение гистологических препаратов по микроскопом. Микроскопия может быть самостоятельным методом изучения, но в последнее время она обычно сочетается с другими методами (гистохимии, гисторадиографии и другие). Следует помнить, что для микроскопии используются разные конструкции микроскопов, позволяющие изучить разные параметры изучаемых объектов. Различают следующие виды микроскопии:

· световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

· ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

· люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

· фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;

· поляризационная микроскопия для изучения, главным образом, волокнистых структур;

· микроскопия в темном поле для изучения живых объектов;

· микроскопия в падающем свете для изучения толстых объектов;

· электронная микроскопия (разрешающая способность до 0,1–0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.

Гистохимические и цитохимические методы позволяет определять состав химических веществ и даже их количество в изучаемых структурах. Метод основан на проведении химических реакций с используемым реактивом и химическими веществами, находящимися в субстрате, с образованием продукта реакции (контрастного или флюоресцентного), который затем определяется при световой или люминесцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод используется чаще всего в экспериментах на животных.

Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2-х до 150 тыс.) и получают интересующие фракции, которые затем изучают различными методами.

Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах.

Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов.

Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Единицы измерения, используемые в гистологии

Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм.

5. В истории развития гистологии условно выделяют три периода:

Домикроскопический период (с IV в. до н. э. по 1665 г.) связан с именами Аристотеля, Галена, Авиценны, Везалия, Фаллопия и характеризуется попытками выделения в организме животных и человека неоднородных тканей (твердых, мягких, жидких и так далее) и использованием методов анатомической препаровки.

Микроскопический период (с 1665 г. по 1950 г.). Начало периода связывают с именем английского физика Роберта Гука, который, во-первых, усовершенствовал микроскоп (полагают, что первые микроскопы были изобретены в самом начале XVII в.), во-вторых, использовал его для систематического исследования различных, в том числе биологических объектов и опубликовал результаты этих наблюдений в 1665 г. в книге «Микрография», в-третьих, впервые ввел термин «клетка» («целлюля»). В дальнейшем осуществлялось непрерывное усовершенствование микроскопов и все более широкое использование их для изучения биологических тканей и органов.

Особое внимание уделялось изучению строения клетки. Ян Пуркинье описал наличие в животных клетках «протоплазмы» (цитоплазмы) и ядра, а несколько позже Р. Броун подтвердил наличие ядра и в большинстве животных клеток. Ботаник М. Шлейден заинтересовался происхождением клетокцитокенезисом. Результаты этих исследований позволили Т. Швану, на основании их сообщений, сформулировать клеточную теорию (1838–1839 гг.) в виде трех постулатов:

· все растительные и животные организмы состоят из клеток;

· все клетки развиваются по общему принципу из цитобластемы;

· каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.

Однако вскоре Р. Вирхов (1858 г.) уточнил, что развитие клеток осуществляется путем деления исходной клетки (любая клетка из клетки). Разработанные Т. Шваном положения, клеточной теории актуальны до настоящего времени, хотя формулируется по-иному.

Современные положения клеточной теории:

· клетка является наименьшей единицей живого;

· клетки животных организмов сходны по своему строению;

· размножение клеток происходит путем деления исходной клетки;

· многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в системы тканей и органов, связанные между собой клеточными, гуморальными и нервными формами регуляции.

· Дальнейшее совершенствование микроскопов, особенно создание ахроматических объективов, позволило выявить в клетках более мелкие структуры:

· клеточный центрГертвиг, 1875 г.;

· сетчатый аппарат или пластинчатый комплекс Гольджи, 1898 г.;

· митохондрии Бенда, 1898 г.

Современный этап развития гистологии начинается с 1950 г. с момента начала использования электронного микроскопа для изучения биологических объектов, хотя электронный микроскоп был изобретен раньше (Е. Руска, М. Кноль, 1931 г.). Однако для современного этапа развития гистологии характерно внедрение не только электронного микроскопа, но и других методов: цито — и гистохимии, гисторадиографии и других вышеперечисленных современных методов. При этом обычно используется комплекс разнообразных методик, позволяющий составить не только качественное представление об изучаемых структурах, но и получить точные количественные характеристики. Особенно широко в настоящее время используются различные морфометрические методики, в том числе автоматизированные системы обработки полученной информации с использованием компьютеров.

Ссылка на основную публикацию
Современные слабительные средства, читать, скачать Азбука здоровья
Современные слабительные средства Запор — очень деликатная тема. Оказывается, с этой проблемой встречается около половины населения нашей страны. Особенно остро...
Снотворные средства описание фармакологической группы в Энциклопедии РЛС
Фармакологическая группа — Снотворные средства Препараты подгрупп исключены. Включить Описание Снотворные средства представлены в настоящее время препаратами разных химических групп....
Снуп при беременности в третьем триместре применение
Лечение насморка при беременности Беременность — особое состояние в жизни женщины, и многие рядовые события приобретают в это время иные...
Современные эндоскопические методы лечения разрыва передней крестообразной связки коленного сустава
ЭНДОПРОТЕЗИРОВАНИЕ КОЛЕННОГО СУСТАВА Вы здесь Анатомия Введение Для того, чтобы лучше понять механизм травматических повреждений и причины некоторых заболеваний коленного...
Adblock detector