Строение и функции цитоплазматической мембраны клеток

§ 12. Цитоплазматическая мембрана

Биология, 10 класс (Лисов, 2014)

Цитоплазматическая мембрана (плазмалемма) — основная, универсальная для всех клеток часть поверхностного аппарата. Ее толщина составляет около 10 нм. Плазмалемма ограничивает цитоплазму и защищает ее от внешних воздействий, принимает участие в процессах обмена веществ между клеткой и внеклеточной средой.

Основными компонентами мембраны являются липиды и белки. Липиды составляют около 40 % массы мембран. Среди них преобладают фосфолипиды.

Молекулы фосфолипидов располагаются в виде двойного слоя (липидный бислой). Как вы уже знаете, каждая молекула фосфолипида образована полярной гидрофильной головкой и неполярными гидрофобными хвостами. В цитоплазматической мембране гидрофильные головки обращены к наружной и внутренней сторонам мембраны, а гидрофобные хвосты — внутрь мембраны (рис. 30).

Кроме липидов, в состав мембран входят белки двух типов: интегральные и периферические. Интегральные белки более или менее глубоко погружены в мембрану либо пронизывают ее насквозь. Периферические белки располагаются на внешней и внутренней поверхностях мембраны, причем многие из них обеспечивают взаимодействие плазмалеммы с надмембранными и внутриклеточными структурами.

На внешней поверхности цитоплазматической мембраны могут располагаться молекулы олиго- и полисахаридов. Они ковалентно связываются с мембранными липидами и белками, образуя гликолипиды и гликопротеины. В клетках животных такой углеводный слой покрывает всю поверхность плазмалеммы, образуя надмембранный комплекс. Он называется гликокаликсом (от лат. гликис сладкий, калюм — толстая кожа).

Функции цитоплазматической мембраны. Плазмалемма выполняет ряд функций, важнейшими из которых являются барьерная, рецепторная и транспортная.

Барьерная функция. Цитоплазматическая мембрана окружает клетку со всех сторон, играя роль барьера — преграды между сложно организованным внутриклеточным содержимым и внеклеточной средой. Барьерную функцию обеспечивает, прежде всего, липидный бислой, не позволяющий содержимому клетки растекаться и препятствующий проникновению в клетку чужеродных веществ.

Рецепторная функция. В цитоплазматическую мембрану встроены белки, способные в ответ на действие различных факторов внешней среды изменять свою пространственную структуру и таким образом передавать сигналы внутрь клетки. Следовательно, цитоплазматическая мембрана обеспечивает раздражимость клеток (способность воспринимать раздражители и определенным образом реагировать на них), осуществляя обмен информацией между клеткой и окружающей средой.

Некоторые рецепторные белки цитоплазматической мембраны способны распознавать определенные вещества и специфически связываться с ними. Такие белки могут участвовать в отборе необходимых молекул, поступающих в клетки.

К рецепторным белкам относятся, например, антигенраспознающие рецепторы лимфоцитов, рецепторы гормонов и нейромедиаторов и т. д. В осуществлении рецепторной функции, кроме мембранных белков, важную роль играют элементы гликокаликса.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию сложной системы маркеров, позволяющих отличать s.свои:/ клетки (той же особи или того же вида) от s.чужих:/. Благодаря этому клетки могут вступать друг с другом во взаимодействия (например, конъюгация у бактерий, образование тканей у животных).

В цитоплазматической мембране могут быть локализованы специфические рецепторы, реагирующие на различные физические факторы. Например, в плазмалемме светочувствительных клеток животных расположена специальная фоторецепторная система, ключевую роль в функционировании которой играет зрительный пигмент родопсин. С помощью фоторецепторов световой сигнал превращается в химический, что, в свою очередь, приводит к возникновению нервного импульса.

Транспортная функция. Одной из основных функций плазмалеммы является обеспечение транспорта веществ как в клетку, так и из нее во внеклеточную среду. Выделяют несколько основных способов транспорта веществ через цитоплазматическую мембрану: простая диффузия, облегченная диффузия, активный транспорт и транспорт в мембранной упаковке (рис. 31).

При простой диффузии наблюдается самопроизвольное перемещение веществ через мембрану из области, где концентрация этих веществ выше, в область, где их концентрация ниже. Путем простой диффузии через плазмалем-му могут проходить небольшие молекулы (например, Н20, 02, С02, мочевина) и ионы. Как правило, неполярные вещества транспортируются непосредственно через липидный бислой, а полярные молекулы и ионы — через каналы, образованные специальными мембранными белками. Простая диффузия происходит относительно медленно. Для ускорения диффузного транспорта существуют мембранные белки-переносчики. Они избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. Такой тип транспорта называется облегченной диффузией. Скорость переноса веществ при облегченной диффузии во много раз выше, чем при простой.

Диффузия (простая и облегченная) — разновидности пассивного транспорта. Он характеризуется тем, что вещества транспортируются через мембрану без затрат энергии и только в том направлении, где наблюдается меньшая концентрация данных веществ.

Активный транспорт — перенос веществ через мембрану из области низкой концентрации этих веществ в область более высокой. Для этого в мембране имеются специальные насосы, работающие с использованием энергии (см. рис. 31). Чаще всего для работы мембранных насосов используется энергия АТФ.

Читайте также:  Беродуал цена в Уфе от руб, купить Беродуал в Уфе в интернет-аптеке, заказать

Одним из наиболее распространенных мембранных насосов является натрий-калиевая АТ Фаза (Na + /K + — АТ Фаза). Она удаляет из клетки ионы Na + и закачивает в нее ионы К + — Для работы Ыа + /К + -АТФаза использует энергию, выделяемую при гидролизе АТФ. Благодаря этому насосу поддерживается разность концентраций Na + и К + в клетке и внеклеточной среде, что лежит в основе многих биоэлектрических и транспортных процессов.

В результате активного транспорта с помощью мембранных насосов происходит также регуляция содержания Mgr + , Са 2+ и других ионов в клетке.

Путем активного транспорта через цитоплазматическую мембрану могут перемещаться не только ионы, но и моносахариды, аминокислоты, другие низкомолекулярные вещества.

Своеобразной и относительно хорошо изученной разновидностью мембранного транспорта является транспорт в мембранной упаковке. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта — эндоцитоз и экзоцитоз.

Эндоцитоз (отгреч. эндон — внутри, китос — клетка, ячейка) — поглощение клеткой внешних частиц путем образования мембранных пузырьков. При эндоцитозе определенный участок плазмалеммы обволакивает внеклеточный материал и захватывает его, заключая в мембранную упаковку (рис. 32).

Выделяют такие разновидности эндоцитоза, как фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости).

Путем эндоцитоза осуществляется питание гетеротрофных протистов, защитные реакции организма (поглощение лейкоцитами чужеродных частиц) и др.

Экзоцитоз (от греч. экзо — снаружи) — транспортировка веществ, заключенных в мембранную упаковку, из клетки во внешнюю среду. Например, пузырек комплекса Гольджи перемещается к цитоплазматической мембране и сливается с ней, а содержимое пузырька выделяется во внеклеточную среду. Таким способом клетки выделяют пищеварительные ферменты, гормоны и другие вещества.

1. Можно ли увидеть плазмалемму в световой микроскоп? Каковы химический состав ‘ и строение цитоплазматической мембраны?

2. Что такое гликокаликс? Для каких клеток он характерен?

3. Перечислите и поясните основные функции плазмалеммы.

4. Какими способами может осуществляться транспорт веществ через мембрану? В чем заключается принципиальное отличие пассивного транспорта от активного?

5. Чем отличаются процессы фагоцитоза и пиноцитоза? В чем проявляется сходство этих процессов?

6. Сравните различные типы транспорта веществ в клетку. Укажите черты их сходства и различия.

7. Какие функции не смогла бы выполнять цитоплазматическая мембрана, если бы в ее состав не входили белки? Ответ обоснуйте.

8. Некоторые вещества (например, диэтиловый эфир, хлороформ) проникают через биологические мембраны даже быстрее, чем вода, хотя их молекулы намного больше молекул воды. С чем это связано?

Глава 1. Химические компоненты живых организмов

Глава 2. Клетка — структурная и функциональная единица живых организмов

Глава 3. Обмен веществ и преобразование энергии в организме

Глава 4. Структурная организация и регуляция функций в живых организмах

Глава 5. Размножение и индивидуальное развитие организмов

Глава 6. Наследственность и изменчивость организмов

Клеточная мембрана

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

Читайте также:  Болезнь двигательного нейрона (мотонейрона) симптомы, диагностика и лечение БАС и других форм БДН

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

Читайте также:  При какой температуре погибает вирус гепатита С

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Цитоплазматическая мембрана – строение и функции. Производные ЦПМ и их функции

Цитоплазматическая мембрана составляет в зависимости от вида бактерий 8–15 % сухой массы клетки. Химический состав ее представлен белково-липидным комплексом, в котором на долю белков приходится 50–75 %, на долю липидов – 15–50 %. Главным липидным компонентом мембраны являются фосфолипиды. Белковая фракция цитоплазматической мембраны представлена структурными белками, обладающими ферментативной активностью. Белковый состав цитоплазматической мембраны разнообразен. Цитоплазматическая мембрана бактерий по химическому составу в целом сходна с мембранами эукариотических клеток, но мембраны бактерий богаче белками, содержат необычные жирные кислоты и в основном не имеют стеринов. К строению цитоплазматической мембраны бактерий приложима жидкостно-мозаичная модель, разработанная для мембран эукариот. Согласно этой модели, мембрана состоит из бислоя липидов. Гидрофобные «концы» молекул фосфолипидов и триглицеридов направлены внутрь, а гидрофильные «головки» – наружу. В двойной слой липидов встроены

белковые молекулы . По расположению и характеру взаимодействия с липидным бислоем белки цитоплазматической мембраны подразделяются на периферические и интегральные.

Цитоплазматическая мембрана выполняет ряд существенных для кле-

• поддержание внутреннего постоянства цитоплазмы клетки. Это достигается за счет уникального свойства цитоплазматической мембраны – ее полупроницаемости. Она проницаема для воды и низкомолекулярных веществ, но не проницаема для ионизированных соединений.Транспорт таких веществ внутрь клетки и выход наружу осуществляется за счет специализированных транспортных систем, которые локализуются в мембране. Такие транспортные системы функционируют за счет механизмов активного транспорта и системы специфических ферментов пермеаз;

• с вышеуказанной особенностью (полупроницаемостью) цитоплазматической мембраны связана и функция транспорта веществ в клетку и вывод их наружу;

• в цитоплазматической мембране локализуются электронтранспортная цепь и ферменты окислительного фосфорилирования;

• цитоплазматическая мембрана связана с синтезом клеточной стенки и капсулы за счет наличия в ней специфических переносчиков для образующих их молекул;

• в цитоплазматической мембране закреплены жгутики. Энергетическое обеспечение работы жгутиков связано с цитоплазматической мембраной.

У прокариот, принадлежащих к разным таксономическим группам, обнаружены мезосомы, которые образуются при впячивании цитоплазматической мембраны в цитоплазму. Существуют разные точки зрения относительно роли мезосом в бак-

териальной клетке. Согласно одной из них, мезосомы служат для усиления мембранзависимых функциональных активностей клетки, так как в мембранах, образующих мезосомы, находятся ферменты, участвующие в энергетическом метаболизме бактерий. Кроме того, считают, что мезосомы играют роль в репликации ДНК и последующем расхождении ее копий по дочерним клеткам. Мезосомы участвуют в процессе инициациии формирования поперечной перегородки при клеточном делении.

Хроматофоры (носители окраски) — этим именем можно назвать все окрашенные тела, заключающиеся в клетках растений, но специально им называются таковые, заключающиеся в клетках водорослей , в отличие от хлорофилльных зерен и хромопластов , заключающихся в клетках высших растений. В то время как у последних носители хлорофилла имеют столь постоянную форму, у водорослей форма их до крайности разнообразна; в этой группе встречается большое разнообразие хлорофиллоносного снаряда, причем самый совершенный представляют зеленые зерна, которые, начиная со мхов, мы встречаем у всех высших растений.

Функции тилакоидов . Светозависимые реакции фотосинтеза на тилакоидной мембране. В тилакоидах осуществляются следу светозависимые реакции фотосинтеза:

1. Светозависимое расщепление воды, в результате которого происходит синтез молекул кислорода;

2. Перенос протонов через тилакоидную мембрану, связанный с электронтранспортной цепью фотосистем и цитохромного комплекса b6f;

3. Синтез АТФ, выполняемый АТФ-синтазой с использованием протонного градиента

Везикула — это базисный инструмент клетки, обеспечивающий метаболизм и транспорт вещества, хранение ферментов также как настоящий химически инертный отсек. Также везикулы играют роль в поддержании плавучести клетки. Некоторые везикулы способны образовываться из частей плазматической мембраны.

Поможем написать любую работу на аналогичную тему

Цитоплазматическая мембрана – строение и функции. Производные ЦПМ и их функции

Цитоплазматическая мембрана – строение и функции. Производные ЦПМ и их функции

Цитоплазматическая мембрана – строение и функции. Производные ЦПМ и их функции

Ссылка на основную публикацию
Стрептодермия — причины, симптомы, диагностика, лечение осложнения и профилактика — Likar24
Что такое стрептодермия, и чем это заболевание опасно для детей? Главная > Консультации > Детский врач > Что такое стрептодермия,...
Стоматит у ребенка – что это такое
Как лечить белые язвочки во рту Стоматит возникает из-за вирусов, грибков и бактерий, а также аллергий и механических травм. Небольшие...
Стоматолог рассказал об опасности больных зубов для организма Новости Известия
Боль в области лица (лицевые боли) Заметки инфекциониста ВАЖНО! Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В...
Стрептодермия ; Кожно-венерологический диспансер №6
Что такое стрептодермия, и чем это заболевание опасно для детей? Главная > Консультации > Детский врач > Что такое стрептодермия,...
Adblock detector